Eclipse TS100.
Adding new dimensions to inverted microscopes

In designing the new microscope, Nikon started with its optical performance. First, they incorporated their acclaimed CFI60 optical system—a fusion of CF optics with infinity optics—into this new, small-sized inverted microscope. These optics provide flat, sharp, and brilliantly clear images, while achieving longer working distances and higher numerical apertures. Furthermore, epi-fluorescence and HMC observations are now possible using accessories available as options. To improve observation under phase contrast microscopy, Nikon developed a series of Apodized Phase Contrast objectives, allowing minute details within a specimen to be observed with excellent contrast and wider tonal ranges.

But Nikon didn’t stop here. They redesigned the body, so that it is robust, rigid, and vibration-resistant, and placed all controls so that they fall naturally under your hand. To accommodate image documentation, Nikon offers a trinocular model as well. The TS100-F comes with a photo port and accepts various photomicrographic systems, including a CCTV camera, or a digital still camera.

Binocular type Model TS100

Trinocular type Model TS100-F

Coarse/fine focus knob
The coaxial coarse/fine focus knob, located in front of and close to the operator, makes operation at high magnifications more efficient and convenient than ever before.

Efficient, user-friendly stage
The stage features a low-profile design that is 195mm high, making it the ideal size for a lab bench or safety hood. Even cell cultures on the bottom of a tall flask or stacking chamber vessel can be viewed, because there is 190mm of space above the stage when the condenser is removed.

Translucent stage ring
Two types of translucent stage rings come with the main body. Because these stage rings are transparent, confirming which objective is being used is easy. The ring with the semicircular hole facilitates observation of the specimen in a chamber since it prevents the objective lens from striking the ring during magnification changes. A glass stage that minimizes the possibility of thermal deformation is also available as an option.

Easy-to-rotate nosepiece
The quintuple (5-position) backward-facing nosepiece offers plenty of clearance to allow the operator to rotate it from either side. Because there is ample space around the nosepiece, handling the nosepiece is easy, even for an operator with large or gloved hands.

Eyepieces
Featuring a 22mm field of view, the widest in this class of microscope, the TS100/TS100-F ensures clear images up to the periphery of the field of view even when using higher magnification objectives.
Observation methods that provide the most information from your specimens

Phase contrast microscopy has never been easier, thanks to Nikon’s New Apodized Phase Contrast objectives

The phase contrast method doesn’t require specimen staining, making it the ideal method for observing living cells and microorganisms. To improve images under this method, Nikon developed an innovative series of Apodized Phase Contrast objectives. These objectives produce images with excellent contrast and a much wider tonal range, even on minute details within a specimen.

In addition, there is no need to change the annulus even when the 40X objective is selected. One condenser phase annulus works from 10X to 40X. The ELWD condenser achieves a long 75mm working distance and a high 0.30 numerical aperture, while delivering greater brightness.

Epi-fluorescence method

This method is ideal for identifying fluorescent tagged substances within a cell, green fluorescent protein (GFP), and a myriad of other clinical and research applications. Epi-fluorescence observation utilizing UV-range light is also possible.

Hoffman Modulation Contrast® method

This method is now possible even with a microscope of this class. HMC creates vivid, 3-dimensional-like images of living, transparent specimens, allowing observation in plastic petri dishes—something that DIC does not do well.

The Basic Principle of the Apodized Phase Contrast System

Nikon has succeeded in reducing halos in the image—considered difficult under phase-contrast microscopy—by improving the phase ring within the objective using a process called Apodization. In an innovative design, Nikon analyzed different diffraction angles and the amount of phase differences created, then added extra light-absorbing bands to the Phase Ring DL. This improves vision under phase contrast microscopy, making it possible to observe cell division activities taking place within a specimen more clearly—hitherto often obscured by unwanted halos—or view finer details within a thick specimen.
Accessories to expand your capabilities

Mechanical stage
By attaching appropriate holders, various specimen slides and micro testplates can be mounted on this stage.

Specimen plate holders
These specimen holders are available for use with the mechanical stage:
- 1. Hemacytometer holder
- 2. Terasaki holder (accepts ø65mm petri dish)
- 3. ø35mm petri dish holder (included on the main body of the TS100/100-F)
- 4. Slide glass holder (accepts ø54mm petri dish)
- 5. Universal holder

Photomicrographic systems including a CCTV or digital still camera
The TS100-F comes with a photo port that accepts photomicrographic systems such as the DS-5M-L1, a stand-alone type digital camera with which you can take photos without PCs. Also a CCTV or photomicrographic equipment can be attached.

CCTV adapters
These CCTV adapters are available as options:
- C-mount TV adapter 0.6X—recommended for 2/3” CCD camera
- C-mount TV adapter 0.7X—recommended for 2/3” CCD camera
- C-mount TV adapter 0.45X—recommended for 1/2” CCD camera
- C-mount TV adapter 0.38X—recommended for 2/3” CCD camera
- C-mount TV adapter VM4X**
- C-mount TV adapter VM2.5X**
- C-mount TV adapter A
- C-mount TV adapter used with Relay Lens 1X
- ENG-mount TV adapter 0.6X—recommended for 2/3” CCD camera
- ENG-mount TV adapter 0.45X—recommended for 1/2” CCD camera
- ENG-mount TV adapter used with Relay Lens 1X

* V-T photo adapter is necessary
** C-mount TV adapter A is necessary

Auxiliary stages
For large specimens, you can widen the space on your plain stage by attaching a pair of auxiliary stages.

Micromanipulators
The Eclipse TS100/100-F can be configured with Nikon/Narishige micromanipulators and microinjectors for a variety of applications, including injections, aspiration, and incisions of cell tissues during cytoengineering, developmental and genetic engineering, pharmacology, reproductive medicine, and neurochemistry.

System Diagram/Dimensions

TS100-F with Digital Camera DS-5M-L1
Specifications

<table>
<thead>
<tr>
<th></th>
<th>TS100 (Binocular model)</th>
<th>TS100-F (Trinocular model)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optical system</td>
<td>CFI60 infinity system, parfocal distance 60mm</td>
<td></td>
</tr>
<tr>
<td>Main body</td>
<td>Square box type with both-end support stage</td>
<td></td>
</tr>
<tr>
<td>Focusing</td>
<td>Vertical objective movement</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Coarse stroke: 37.7 mm per rotation, Fine stroke: 0.2 mm per rotation</td>
<td></td>
</tr>
<tr>
<td>Eyepiece tube</td>
<td>Siedentopf-type binocular tube</td>
<td>Siedentopf-type trinocular tube (light distribution, bino/photo: 100/0, 0/100)</td>
</tr>
<tr>
<td></td>
<td>Interpupillary distance: 50–75 mm, Eyepoint height: 400mm from table, Inclination: 45° from horizon</td>
<td></td>
</tr>
<tr>
<td>Nosepiece</td>
<td>Quintuple nosepiece, backward-facing type</td>
<td></td>
</tr>
<tr>
<td>Plain stage</td>
<td>Stage size: 170 x 225 mm, Stage height: 195mm from table, Auxiliary stage attachable</td>
<td></td>
</tr>
<tr>
<td>Illumination</td>
<td>Pre-centered 6V-30W halogen lamp, Filter frame (accepts 2 filters), Heat absorbing filter and diffuser</td>
<td></td>
</tr>
<tr>
<td>Slider</td>
<td>Non-centerable phase slider (PhL, Ph1, 1 empty position)</td>
<td>Centerable phase slider (PhL, Ph1, 1 empty position), Ph2 ring (optional)</td>
</tr>
<tr>
<td></td>
<td>Centerable phase slider (PhL, Ph1, 1 empty position), Ph2 ring (optional)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Heat absorbing filter and diffuser</td>
<td>HMC slider (MC1, MC2, MC3)</td>
</tr>
<tr>
<td>Attachable mechanical stage</td>
<td>Stage movement: 126 x 80 mm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Accepts several micro-testplate holders</td>
<td></td>
</tr>
<tr>
<td>Holder</td>
<td>35mm Petri Dish Holder</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Option: Universal Holder, Terasaki holder (accepts ø65mm petri dish), Slide glass holder (accepts ø54mm petri dish), Hemacytometer holder</td>
<td></td>
</tr>
<tr>
<td>Filter</td>
<td>45mm NCB11, ND8 and GIF (green interference)</td>
<td></td>
</tr>
<tr>
<td>Eyepiece lens</td>
<td>C-W 10X (F.O.V. 22mm), C-W 15X (F.O.V. 16mm)</td>
<td></td>
</tr>
<tr>
<td>Condenser (without condenser O.D. 190mm)</td>
<td>ELWD condenser: N.A. 0.3 (O.D. 75mm)</td>
<td>HMC condenser: N.A. 0.4 (O.D. 44mm)</td>
</tr>
<tr>
<td>Epi-fluorescence attachment</td>
<td>Field diaphragm, Fluorescence filter block holder (2 filter blocks mountable, 1 empty position), Heat absorbing filter, Lamphouse for 50W mercury lamp, Light shielding plate, UV-cut filter (detachable)</td>
<td></td>
</tr>
</tbody>
</table>

Note: Hoffman Modulation Contrast and HMC are registered trademarks of Modulation Optics, Inc.

Specifications and equipment are subject to change without any notice or obligation on the part of the manufacturer. January 2004.

©1999-04 NIKON CORPORATION

WARNING

TO ENSURE CORRECT USAGE, READ THE CORRESPONDING MANUALS CAREFULLY BEFORE USING YOUR EQUIPMENT.